Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance.

نویسندگان

  • Sung-Wook Min
  • Hee Sung Lee
  • Hyoung Joon Choi
  • Min Kyu Park
  • Taewook Nam
  • Hyungjun Kim
  • Sunmin Ryu
  • Seongil Im
چکیده

We report on the nanosheet-thickness effects on the performance of top-gate MoS(2) field-effect transistors (FETs), which is directly related to the MoS(2) dielectric constant. Our top-gate nanosheet FETs with 40 nm thin Al(2)O(3) displayed at least an order of magnitude higher mobility than those of bottom-gate nanosheet FETs with 285 nm thick SiO(2), benefiting from the dielectric screening by high-k Al(2)O(3). Among the top-gate devices, the single-layered FET demonstrated the highest mobility of ∼170 cm(2) V(-1) s(-1) with 90 mV dec(-1) as the smallest subthreshold swing (SS) but the double- and triple-layered FETs showed only ∼25 and ∼15 cm(2) V(-1) s(-1) respectively with the large SS of 0.5 and 1.1 V dec(-1). Such property degradation with MoS(2) thickness is attributed to its dielectric constant increase, which could rather reduce the benefits from the top-gate high-k dielectric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and study of geometrical variability on the performance of junctionless tunneling field effect transistors: Advantage or deficiency?

This study investigates geometrical variability on the sensitivity of the junctionless tunneling field effect transistor (JLTFET) and Heterostructure JLTFET (HJLTFET) performance. We consider the transistor gate dielectric thickness as one of the main variation sources. The impacts of variations on the analog and digital performance of the devices are calculated by using computer aided design (...

متن کامل

Analysis and study of geometrical variability on the performance of junctionless tunneling field effect transistors: Advantage or deficiency?

This study investigates geometrical variability on the sensitivity of the junctionless tunneling field effect transistor (JLTFET) and Heterostructure JLTFET (HJLTFET) performance. We consider the transistor gate dielectric thickness as one of the main variation sources. The impacts of variations on the analog and digital performance of the devices are calculated by using computer aided design (...

متن کامل

A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor

Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...

متن کامل

Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor

In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...

متن کامل

Improved drain current characteristics of tunnel field effect transistor with heterodielectric stacked structure

In this paper, we proposed a 2-D analytical model for electrical characteristics such as surface potential, electric field and drain current of Silicon-on-Insulator Tunnel Field Effect Transistor (SOI TFETs) with a SiO2/High-k stacked gate-oxide structure. By using superposition principle with suitable boundary conditions, the Poisson’s equation has been solved to model the channel r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2013